They are obtained from organisms including plants, bacteria and other microbes, fungi, nematodes, etc. They are often important components of integrated pest management (IPM) programmes, and have received much practical attention as substitutes to synthetic chemical plant protection products (PPPs).
TYPES
Biopesticides can be classified into these classes:
Biopesticides have usually no known function in photosynthesis, growth or other basic aspects of plant physiology. Instead, they are active
against biological pests. Many chemical compounds have been identified that are produced by plants to protect them from the pest. These materials are biodegradable and renewable alternatives, which can be economical for practical use. Organic Farming systems embraces this approach to pest control
RNA
RNA interference is under study for possible use as a spray-on insecticide by multiple companies, including Monsanto, Syngenta, and Bayer.
Such sprays do not modify the genome of the target plant. The RNA could be modified to maintain its effectiveness as target species evolve tolerance to the original. RNA is a relatively fragile molecule that generally degrades within days or weeks of application. Monsanto estimated costs to be on the order of $5/acre.
RNAi has been used to target weeds that tolerate Monsanto’s Roundup herbicide. RNAi mixed with a silicone surfactant that let the RNA molecules enter air-exchange holes in the plant’s surface that disrupted the gene for tolerance, affecting it long enough to let the herbicide work. This strategy would allow the continued use of glyphosate-based herbicides, but would not per se assist a herbicide rotation strategy that relied on alternating Roundup with others.
They can be made with enough precision to kill some insect species, while not harming others. Monsanto is also developing an RNA spray to
kill potato beetles One challenge is to make it linger on the plant for a week, even if it’s raining. The Potato beetle has become resistant to
more than 60 conventional insecticides.
Monsanto lobbied the U.S. EPA to exempt RNAi pesticide products from any specific regulations (beyond those that apply to all pesticides) and be exempted from rodent toxicity, allergenicity and residual environmental testing. In 2014 an EPA advisory group found little evidence of a risk to people from eating RNA.
However, in 2012, the Australian Safe Food Foundation alleged that the RNA trigger designed to change wheat’s starch content might interfere
with the gene for a human liver enzyme. Supporters countered that RNA does not appear to make it past human saliva or stomach acids. The US National Honey Bee Advisory Board told EPA that using RNAi would put natural systems at “the epitome of risk”. The beekeepers cautioned that pollinators could be hurt by unintended effects and that the genomes of many insects are still unknown. Other unassessed risks include ecological (given the need for sustained presence for herbicide and other applications) and the possible for RNA drift across species boundaries.
Monsanto has invested in multiple companies for their RNA expertise, including Beeologics (for RNA that kills a parasitic mite that infests hives and for manufacturing technology) and Preceres (nanoparticle lipidoid coatings) and licensed technology from Alnylam and Tekmira. In 2012 Syngenta acquired Devgen, a European RNA partner. Startup Forrest Innovations is investigating RNAi as a solution to citrus greening disease that in 2014 caused 22 percent of oranges in Florida to fall off the trees.
EXAMPLES
Bacillus thuringiensis, a bacterial disease of Lepidoptera, Coleoptera and Diptera, is a well-known insecticide example. The toxin from B. thuringiensis (Bt toxin) has been incorporated directly into plants through the use of genetic engineering. The use of Bt Toxin is particularly controversial. Its manufacturers claim it has little effect on other organisms, and is more environmentally friendly than synthetic pesticides. However, at least one scientific study has suggested that it may lead to slight histopathological changes on the liver and kidneys of mammals with Bt toxin in their diet.
Other microbial control agents include products based on:
Various naturally occurring materials, including fungal and plant extracts, have been described as biopesticides. Products in this category
include:
APPLICATIONS
Biopesticides are biological or biologically-derived agents, that are usually applied in a manner similar to chemical pesticides, but achieve pest management in an environmentally friendly way. With all pest management products, but especially microbial agents, effective control requires appropriate formulation and application.
Biopesticides for use against crop diseases have already established themselves on a variety of crops. For example, biopesticides already play an important role in controlling downy mildew diseases. Their benefits include: a 0-Day Pre-Harvest Interval (see: maximum residue limit), the ability to use under moderate to severe disease pressure, and the ability to use as a tank mix or in a rotational program with other registered
fungicides. Because some market studies estimate that as much as 20% of global fungicide sales are directed at downy mildew diseases, the
integration of biofungicides into grape production has substantial benefits in terms of extending the useful life of other fungicides, especially those in the reduced-risk category.
A major growth area for biopesticides is in the area of seed treatments and soil amendments. Fungicidal an biofungicidal seed treatments are used to control soil borne fungal pathogens that cause seed rots, damping-off, root rot and seedling blights. They can also be used to control internal seed–borne fungal pathogens as well as fungal pathogens that are on the surface of the seed. Many biofungicidal products also show capacities to stimulate plant host defence and other physiological processes that can make treated crops more resistant to a variety
of biotic and abiotic stresses.
ADVANTAGES
DISADVANTAGES
M.Sc. Environmental Science, Department of Environmental Science, Burdwan University